Мукор пеницилл аспергилл. Порядок Эуроциевые (Eurotiales) (И


Так или иначе с грибами знакомы все. Среди нас много поклонников «тихой охоты», ценящих неспешные прогулки по лесу, снимающие стрессы городской жизни. Собранные грибы идут на приготовление разнообразных вкусных блюд, неизменно украшающих дружеские застолья, а в сушеном, соленом или маринованном виде их запасают на длительный срок. Но немногие знают, насколько обширно царство грибов и как тесно наша жизнь связана с ним. Мы расскажем об этом в наших статьях.

Значение грибов

В повседневной жизни грибами называют лишь плодовые тела шляпочных грибов, и мало кто вспоминает о том, что к миру грибов относится огромное множество других видов организмов.

В настоящее время насчитывается до 100 тыс. видов грибов. Грибы очень разнообразны по размерам, облику и другим характеристикам. В разных состояниях и фазах своего развития они присутствуют повсеместно: в почве, воздухе, воде, внутри других живых организмов и на их поверхности. Роль грибов в нашем рационе гораздо разнообразнее, чем подозревает большинство людей, и, к сожалению, она не всегда благотворна.

Грибы – гетеротрофные организмы и для своего существования нуждаются в готовых органических веществах. Ферменты, выделяемые грибами, воздействуют на субстрат и способствуют его частичному перевариванию вне грибной клетки. Такой полупереваренный материал легко поглощается всей поверхностью клетки.

Велика роль грибов в круговороте веществ в природе. Как редуценты, т.е. разрушители органики, они минерализуют органическое вещество, делая вновь доступными для использования другими организмами двуокись углерода, соединения азота, фосфора, калия и другие элементы минерального питания. Поэтому грибы-сапрофиты, разрушающие мертвое органическое вещество, составляют важный элемент разнообразных растительных сообществ.

Однако помимо грибов, довольствующихся лесной подстилкой и другими растительными остатками, немало и таких, деятельность которых приносит ощутимый вред. Некоторым из них по вкусу наши съестные припасы – они их портят, а иногда и делают ядовитыми. Грибы разрушают деревянные постройки, многие материалы и изделия из них. Так, например, грибы могут портить ткани, кожу, бумагу, картон, краски и лаки, повреждая книги и картины, наносят подчас трудно восполнимый ущерб библиотекам и музеям. В списке материалов, поражаемых грибами, оказываются смазочные масла и другие нефтепродукты, изоляция кабелей и проводов, воск, фотопленка. Существуют виды грибов, способные поселяться на металлических изделиях и линзах оптических приборов, повреждая их в процессе своей жизнедеятельности. Особенно велик ущерб от грибов в условиях влажного и теплого климата. Например, во время второй мировой войны менее 50% военных грузов, направленных в тропики и субтропики, доходило туда пригодными к использованию без дополнительных ремонтных работ.

Давно замечено, что многие грибы в лесу растут вблизи определенных деревьев – это нашло отражение в их названиях: подберезовики, подосиновики и т.п. Такой выбор местообитаний связан с тем, что они тесно сотрудничают с высшими растениями, образуя с их корнями микоризу («грибокорень»). С другой стороны, всходы многих видов лесных деревьев плохо растут и даже погибают, если в почве отсутствуют необходимые им грибы-микоризообразователи. Образуя микоризу с растениями, грибы снабжают растения элементами минерального питания, в первую очередь фосфором, соединения которого в почве малодоступны. Растения, в свою очередь, делятся с грибами продуктами фотосинтеза.

Микориза свойственна большей части высших растений. Особенно сильную привязанность к грибам обнаруживает семейство орхидных: симбиоз с грибами для всех видов этого семейства обязателен – уже семена орхидных должны быть при прорастании заражены грибом, иначе развитие орхидей останавливается. Пока такая тесная связь орхидных с грибной флорой не была обнаружена, тропические виды орхидей не удавалось ввести в оранжерейную культуру в Европе.

Широко используются биохмические особенности грибов, в первую очередь дрожжей, расщепляющих сахар с образованием этилового спирта и углекислого газа. Спиртовое брожение лежит в основе целого ряда пищевых производств – хлебопечения, виноделия, пивоварения, а также производства технического спирта из отходов целлюлозно-бумажной промышленности. Некоторые виды грибов синтезируют антибиотики, первым из которых широкую известность получил пенициллин. Грибы из родов пенициллиум и аспергиллус нашли применение в производстве не только антибиотиков, но и некоторых органических кислот и ферментов. Операции по пересадкам сердца и других органов стали давать обнадеживающие результаты с начала 80-х гг., когда стал применяться выделенный из почвенного гриба циклоспорин: это вещество подавляет реакции отторжения, не давая побочных эффектов, свойственных применявшимся ранее лекарственным средствам.

Строение и размножение грибов

У большинства грибов вегетативное тело представляет собой мицелий (грибницу), состоящий из тонких, толщиной в несколько микрон, ветвящихся нитей-гиф с верхушечным ростом и боковым ветвлением. Мицелий пронизывает субстрат и всей поверхностью поглощает из него питательные вещества (субстратный мицелий ). Мицелий может также располагаться и на поверхности субстрата, и подниматься над ним (поверхностный и воздушный мицелий) – тогда его можно видеть невооруженным глазом или при помощи лупы как белую или окрашенную рыхлую сеточку, пушистый (иногда ватообразный) налет или пленочку. На воздушном мицелии обычно образуются органы размножения.

Различают неклеточный мицелий , лишенный перегородок и представляющий собой как бы одну гигантскую клетку с большим числом ядер, и клеточный мицелий , разделенный перегородками на отдельные клетки, содержащие одно, два или много ядер.

Продолжение следует

В группу плесневых грибов объединяют грибные организмы, которые образуют характерный налёт (плесень) на субстрате (почве, органических остатках). Они вызывают порчу доброкачественных продуктов (хлеба, овощей, ягод, фруктов и пр.). Большинство этих грибов - сапрофиты, но некоторые из них являются возбудителями инфекционных заболеваний человека, животных, чаще растений.

Замечание 1

Гриб трихофитон является причиной развития стригущего лишая у человека и животных.

Наиболее известными плесневыми грибами являются мукор, аспергилл и пеницилл.

Мукор

Мукор (Mucor) (белая, головчатая или хлебная плесень) - сапрофитный гриб,образующий пушистый налёт на пищевых продукта (овощах, хлебе), кормах, конском навозе, поверхности почвы и т. п.

Его мицелий, пронизывающий субстрат, - одна чрезвычайно большая ветвистая клетка со множеством ядер.

У мукора известны два неравноценных по своему значению способы размножения: бесполое и половое.

Первостепенную роль в растпространении и сохранении вида в природе играет бесполое спороношение, которое при благоприятных условиях происходит равномерно на протяжении всей жизни гриба.

  1. Сначала белая плесень мукора имеет вид пушистого налёта.
  2. Через некоторое время он становится чёрным. При этом на отростках гиф (спорангиеносцах ), направленных вертикально вверх, развиваются чёрные округлые спорангии , внутри которых формируются чёрные неподвижные одноклеточные споры.
  3. После разрыва оболочки спорангия лёгкие мелкие споры разносятся воздушными потоками. Они прорастают, когда попадают на благоприятный субстрат и образуют новые мицелии.

Замечание 2

Половой процесс происходит лишь в случае истощения питательного субстрата. Тогда содержимое двух специализированных клеток - гаметангиев сливается и в результате образуется зигоспора, прорастающая после периода покоя.

Аспергилл

Аспергилл (Aspergillus) имеет многоклеточный мицелий. Плодоносный гиф (конидиеносец) на верхушке имеет утолщение, несущее на себе палочкоподобные выросты, от которых отшнуровывается цепочка спор. Плодовые тела образуются крайне редко.

Пеницилл

Пеницилл (Penicillium)- гриб-сапрофит, который образует мицелий в виде зелёной или сизоватой плесени на влажном сене, продуктах питания, растительных остатках и т. п.

Грибница пеницилла состоит из сильно разветвлённых многоклеточных гиф. В случае бесполого спороношения на поверхности мицелия образуются конидиеносцы - вертикально направленные вверх отростки, имеющие на верхушке вид кисточек, от которых отсоединяются многочисленные лёгкие и мелкие споры (конидии). Половым способом пеницилл размножается очень редко. Результатом полового процесса является образование на мицелии микроскопических круглых плодовых тел, внутри которых и формируются споры.

Замечание 3

Некоторые виды пеницилла способны вырабатывать и выделять в окружающую среду особенное вещество - антибиотик пенициллин. Его бактерицидные качества первым продемонстрировал в $1928$ году английский учёный А. Флеминг. Пенициллин применяют при лечении абсцессов, инфекционных ран, пневмонии, менингита, и других заболеваний, вызванных болезнетворными микроорганизмами.

Несколько видов пеницилла используют в пищевой промышленности для изготовления сыров «рокфор», «камамбер», «бри» и др.

Тело гриба представляет собой мицелий, состоящий из тонких нитей - гиф. Мицелий имеет тесную связь с субстратом, что обусловлено осмотическим поглощением питательных веществ. У высших грибов мицелий разделен на отдельные клетки перегородками - септами, т.е. у них септированнный (клеточный) мицелий. Низшие грибы имеют неклеточное строение мицелия, так как его гифы не разделены на перегородки, а представляют собой как бы одну разветвленную клетку со множеством ядер.

Грибы обособлены по своей морфофизиологической организации от остального мира живых существ. Их нельзя отнести ни к растениям, ни к животным. Существуют две теории происхождения грибов: животная и растительная, поскольку клетки грибов имеют признаки как животной, так и растительной клетки (табл. 5.2).

Теория растительного происхождения грибов предполагает их происхождение от зеленых водорослей, из чего следует, что грибы прежде всего явно регрессивная группа растений, утративших хлоропласты.

Теория животного происхождения основывается на том, что грибы изначально являются бесхлорофильными организмами, т.е. происходят от простейших гетеротрофных организмов, а не от водорослей. Эта теория предпочтительнее, поскольку бесхлорофильные водоросли, относимые к зеленым, в качестве запасного продукта накапливают крахмал, в то время как у грибов крахмала нет.

Таблица 5.2. Особенности строения грибной клетки

Грибы - это гетеротрофы. Как и бактериям, им свойственно внеклеточное переваривание, осуществляемое за счет выделения во внешнюю среду ферментов. Всасывание расщепленных питательных веществ происходит осмотически, всей поверхностью тела. Клетки мицелия в качестве запасных питательных веществ откладывают углеводы в виде гликогена, жиры в виде капель липидов, а в вакуолях - белки.

Грибы способны вступать в симбиоз с высшими растениями, образуя микоризу (грибокорень). Грибы используют углеводы, синтезируемые растением, и добывают для него (за счет минерализации органических соединений) различные соединения с азотом, фосфором, вырабатывают активаторы роста и витаминоподобные вещества.

Размножаться грибы могут вегетативно, бесполым и половым путем.

Вегетативное размножение может происходить частями мицелия (почти у всех грибов), почкованием (дрожжи). Бесполое размножение происходит за счет образования зооспор, спорангиоспор и конидий.

Зооспоры образуются у грибов, ведущих водный образ жизни (хи- тридиомицеты, оомицеты). Их подвижность обеспечивают жгутики (их 1 или 2). Образуются внутри одноклеточных зооспорангиев и при созревании выходят в воду. Покрываются оболочкой и прорастают в новую особь.

Спорангиеспоры образуются эндогенно - внутри одноклеточных спорангиев, возникающих на гифах-спорангиеносцах. В одном спорангии может быть до 10 тыс. спор, которые при созревании выходят из спорангия и распространяются ветром на значительные расстояния. Попав в благоприятные условия, спора прорастает в новый мицелий (например, у мукора).

Конидии образуются экзогенно на особых гифах - конидиеносцах. Конидии образуют цепочки, отчленяются и в благоприятной среде прорастают в новый мицелий (например, у пеницилла).

Половое размножение у низших грибов происходит:

При слиянии гамет - гаметогамия (изогамия, гетерогамия и оогамия);

При слиянии двух многоядерных специализированных половых органов (гаметангиев) - зигогамия.

Половое размножение у высших грибов:

гаметангиогамия; архикарп - женский гаметангий, антеридий - мужской (у сумчатых грибов);

соматогамия - слияние гаплоидных соматических клеток гетероталличных гиф (+ и - физиологически различных гиф), например у высших базидиальных грибов.

Половой процесс всегда завершается образованием диплоидной зиготы, ее мейотическим делением и спороношением.

К низшим грибам относится отдел зигомикоты, к высшим - отделы: сумчатые, базидиомикоты, несовершенные.

ОТДЕЛ ЗИГОМИКОТЫ (ZYGOMYCOTA)

Мукор широко распространен в природе как белая плесень (рис. 5.15). Сапрофит по способу питания; развивается на почве, пищевых продуктах. Гифы мицелия представляют собой вытянутую разросшуюся гигантскую клетку с множеством ядер (неклеточное строение). Ядра - с гаплоидным набором хромосом (n). На мицелии развиваются многочисленные вертикальные спорангиеносцы с буро-черными спорангиями. В результате митоза содержимое спорангия распадается на множество спор (до 10 тыс.). После созревания оболочка спорангия лопается, и споры рассеиваются, прорастая в новые особи. Размножение может быть бесполым (спорами), вегетативным (частями мицелия), редко - половым (зигогамия).

При зигогамии (рис. 5.16) физиологически различные гифы - гетероталличные, условно обозначающиеся как + и -, начинают расти навстречу друг к другу. На концах гиф образуются гаметангии, от- деляющиеся перегородками от остальной гифы. Далее происходит гаметангиогамия, состоящая в слиянии 2 специализированных половых структур (гаметангиев), не дифференцированных на гаметы, и образуется зигота с множеством диплоидных ядер. Зигота покрывается толстой бурой оболочкой. После периода покоя ядра претер- певают мейоз, а зигота прорастает в зародышевый спорангий. В него переходят гаплоидные ядра + и-, образовавшиеся после мейоза. В спорангии формируются споры, после их созревания спорангий вскрывается, споры рассеиваются и прорастают в новые мицелии (+ и -).

Рис. 5.15. Строение мукора (Мuсоr mucedo): 1 - гифа; 2 - мицелий; 3 - спорангиеносец; 4 - спорангий со спорами

Некоторые мукоровые грибы вызывают микоз (мукоромикоз) легких (ложный туберкулез), головного мозга и других органов че ловека, а также сельскохозяйственных растений. Многие виды рода обладают высокой ферментативной активностью, что используется при получении «соевого сыра» из семян сои, спирта из клубней картофеля и т.д.

Рис. 5.16. Жизненный цикл мукора (Мuсоr): А - гаплоидная фаза; Б - диплоидная фаза: 1 - два гетероталличных (противоположных по физиологическому знаку) мицелия; 2 - спорангиеносец; 3 - спорангий; 4 - споры; 5 - прорастание спор; 6 - гаметангий; 7 - подвесок; 8 - зигоспора; 9 - прорастающая зигоспора; 10 - прорастающий мицелий

ОТДЕЛ СУМЧАТЫЕ ГРИБЫ, ИЛИ АСКОМИКОТЫ (ASCOMYCOTA)

Это один из наиболее обширных классов грибов, включающий более 30 тыс. видов. К этому классу относятся дрожжи, представ- ленные одиночными почкующимися клетками, и грибы с крупными плодовыми телами, например сморчки и строчки. Аскомикоты широко распространены в природе во всех природных зонах. По способу питания это сапрофиты. Мицелий сумчатых грибов является септированным, т.е. разделен на клетки (с гаплоидным набором хромосом). Характерный признак аскомикот - наличие сумок (аск), образующихся в результате полового процесса. Сумки - замкнутые структуры, содержащие определенное количество аскоспор (споры полового размножения) и образующиеся в результате мейоза.

У многих аскомикот сумки образуются в плодовых телах (подкласс Плодосумчатые). Различают 3 типа плодовых тел: клейстотеций, перитеций и апотеций. У других представителей сумки лежат открыто на мицелии (подкласс Голосумчатые).

Большая роль в цикле развития принадлежит и бесполому размножению. Споры бесполого размножения - конидии - образуются в результате митоза на мицелии с гаплоидными ядрами (n) или кони- диеносцах различного строения.

Наиболее распространенным и имеющим практическое значение является род Дрожжи (Saccharomyces). Дрожжи представлены единичными, овальными клетками (рис. 5.17). Для дрожжей харак- терно вегетативное размножение, осуществляющееся почкованием; для этого им необходимы питательная среда, наличие в ней сахара и определенная температура. При неблагоприятных условиях происходит половой процесс; при слиянии 2 гаплоидных дочерних клеток (хологамия) образуется зигота, превращающаяся в сумку. В результате мейоза в сумке образуются четыре споры (аскоспоры), прорастающие в новые дрожжевые клетки.

Пекарские дрожжи (Saccharomyces cerevisiae) объединяют многие выведенные в культуре дрожжи: спиртовые, пивные, винные, хлебопекарные. Все эти дрожжи разлагают сахар на этиловый спирт и СО 2 . Так, при добавлении дрожжей в тесто они начинают разлагать имеющуюся там глюкозу, образующуюся из крахмала. При этом выделяется СО 2 , обеспечивающий тесту пористость и увеличение объема. При выпечке этанол и СО 2 улетучиваются.

Рис. 5.17. Дрожжи пивные (Saccharomyces cerevisiae): А - одноклеточный таллом; Б - сумка с аскоспорами; В – почкование

Дрожжи являются ценным пищевым и кормовым продуктом. Содержат до 50% белка, а также жиры и углеводы. Синтезируют в больших количествах витамины, особенно В 2 . Их используют при лечении малокровия, а также как источник белка при добавлении в кормовые продукты в животноводстве и птицеводстве.

Подкласс Плодосумчатые (Carpoascomycetidae)

Представители этого подкласса характеризуются наличием плодовых тел, в которых находятся сумки. Плодовые тела образуются за счет плотного сплетения гаплоидных и дикарионных (двуядерных) гиф, называемых также аскогенными. Плодовые тела (аскокарпы) бывают 3 типов: замкнутые (закрытые) - клейстотеции, полузамкнутые - перитеции, незамкнутые (открытые) - апотеции.

Цикл развития спорыньи протекает со сменой ядерных фаз (рис. 5.18). Так, осенью на злаковых растениях образуются склеро- ции - темно-фиолетовые снаружи и белые внутри рожки, представляющие собой мицелий гриба (обезвоженные гифы) в стадии покоя. На зиму склероции выпадают из злаков на почву и зимуют в ней. Весной на почве склероции прорастают, образуя нитевидные выросты, увенчанные головками - стромами. В этих стромах в результате полового процесса образуются плодовые тела - перитеции, заполнен- ные длинными цилиндрическими сумками (асками), содержащими нитевидные аскоспоры - споры полового размножения (рис. 5.19). Созревание спор идет в результате мейоза во время цветения злака. Споры активно выбрасываются с помощью ветра, попадают на рыльце цветущего злака и прорастают. Образующийся мицелий проникает в завязь пестика и разрушает ее. На концах гиф мицелия в результате митоза отшнуровываются конидии - споры бесполого размножения, т.е. наступает конидиальное спороношение. При этом гифы гриба выделяют капельки сладкой жидкости - «медвяную росу». Насекомые переносят конидии на цветки соседних растений и заражают их.

Рис. 5.18. Спорынья пурпурная (Claviceps рurpurеа): А - колос ржи со склероциями (1); Б - стромы (2), выросшие на перезимовавшем склероции; В - продольный срез через строму с перитециями; Г - продольный срез через перитеции (3) с сумками; Д - сумка с нитевидными аскоспорами (4); Е - конидиальное спороношение

Рис. 5.19. Развитие сумки с аскоспорами: А, Б - образование зиготы на верхушке аскогенной гифы; В-Е - мейоз и развитие сумки с аскоспорами

Незамкнутые плодовые тела - апотеции - встречаются у таких представителей, как сморчки (Morchella), строчки (Gyromitra). Это открытое плодовое тело обычно блюдцевидной, бокаловидной формы размером от 0,1 до 10 см, разнообразной окраски - от ярко-оранжевой или красной до коричневой и черной. Верхний слой (гимений) содержит множество сумок. Плодовые тела грибов из этой группы состоят из стерильной ножки и складчатой или лопастной шапки (рис. 5.20).

Сморчки и строчки - съедобные грибы, но при употреблении в пищу строчки предварительно необходимо прокипятить, а воду слить.

Рис. 5.20. Аскомикоты - внешний вид и плодовые тела сморчков и строчков:

А - сморчок конический (Моrchella coinca); Б - строчок обыкновенный (Gyromitra exculenta); 1 - разрезы плодовых тел

ОТДЕЛ БАЗИДИОМИКОТЫ (BASIDIMYCОTА)

В этом классе объединены почти все группы шляпочных грибов, насчитывающих около 30 тыс. видов. Вегетативное тело представлено членистым мицелием, состоящим из членистых гиф.

Размножение: вегетативное (осуществляется частями мицелия), бесполое (конидиями) и половое.

При половом процессе специальных органов полового размножения не образуется. Половой процесс протекает в форме соматогамии (рис. 5.21). Из прорастающей гаплоидной базидиоспоры развивается первичный мицелий, который затем превращается в членистый. Каждый членик одноядерный. Вскоре происходит гологамия - слияние конечных клеток гиф. Однако слияние содержимого члеников не сопровождается слиянием ядер. Образуются дикарионы, которые затем синхронно делятся. Так формируется вторичный дикарионный мицелий.

Рис. 5.21. Развитие базидиального гриба. Схема цикла развития: А - схема цикла развития: 1 - базидия; 2 - базидиоспора; 3 - первичный мицелий; 4 - дикарионный мицелий; 5 - плодовое тело из дикарионного мицелия; Б - развитие базидии с базидиальными спорами

На дикарионном мицелии образуется плодовое тело, которое состоит из пенька и шляпки. Гимениальный слой шляпки может быть пластинчатым или трубчатым. В гимениальном слое на концах дикарионных гиф из 2 ядерных клеток образуются базидии. По своему развитию базидии гомологичны сумкам. В базидии завершается половой процесс, т.е. сливаются ядра дикариона и образуется диплоидное ядро. Такая одноклеточная базидия называется холобазидией. Образовавшееся диплоидное ядро делится мейозом с образованием 4 гаплоидных ядер (см. рис. 5.19, А). К этому времени в верхней части базидии образуются четыре трубчатых выроста - стеригмы. В стеригмы перетекают образовавшиеся ядра и формируются 4 базидиоспоры: 2 условно со знаком - и 2 со знаком +. Поэтому первичные мицелии, вырастающие из них, будут гетероталличными. Базидии образуются непосредственно на гифах или в плодовых телах различной формы, но чаще состоящих из шляпки и ножки. В цикле развития чередуются 3 фазы: гаплоидная (короткая) - это базидиоспоры, дикарионная (длится основную часть жизни) - дикарионный мицелий и диплоидная (кратковременная) - молодая базидия до образования базидиоспор.

ОТДЕЛ ДЕЙТЕРОМИКОТЫ (DEUTEROMYCOTA), ИЛИ НЕСОВЕРШЕННЫЕ ГРИБЫ (FUNGI IMPERFECT!)

Дейтеромикоты, наряду с бизидиомикотами и аскомикотами, являются крупнейшей группой грибов, объединяющей 25-30 тыс. ви- дов. Эти грибы представляют собой бесполые формы (анаморфы), размножающиеся бесполым путем - конидиями. Жизненный цикл у них проходит в гаплоидной стадии без полового процесса. Вполне возможно, что дейтеромикоты - это наиболее специализированные линии эволюции грибов.

Большое медицинское значение имеет род Пенициллиум (Penicillium). Пеницилл имеет членистый мицелий зеленоватого цвета, состоящий из одноядерных члеников. Отходящие вверх гифыконидиеносцы ветвятся на верхнем конце на стеригмы. Последние по внешнему виду напоминают кисточку или кисть руки и заканчиваются цепочкой наружных спор - конидий (рис. 5.22). Конидии - это споры бесполого размножения, образующиеся за счет митоза.

Наблюдается и половой процесс, в результате которого непосредственно на мицелии образуются закрытые шаровидные плодовые тела ярко-желтого цвета - клейстотеции. Внутри клейстотециев формируются сумки с 8 аскоспорами. Созревшие аскоспоры выходят из сумок после разрыва клейстотеция.

Пеницилл (Penicillium), сапрофит по способу питания, поселяясь на пищевых продуктах и изделиях (ткани, кожа), вызывает их порчу. Пеницилл используют не только в медицинской практике, но и в пищевой промышленности для приготовления особых сортов сыра («рокфор»).

Рис. 5.22. Дейтеромикоты (Deuteromycota) пеницилл: 1 - мицелий; 2 - конидиеносец; 3 - конидии; 4 – стеригмы

Велико значение грибов в деятельности человека. Они участвуют в круговороте веществ в природе. Грибы, как и бактерии, минерализуют органические вещества и принимают участие в образовании гумуса. Их используют в пищевой промышленности для производства спирта, вина, пива, кваса, в хлебопечении, при получении белков и витаминов. Грибы образуют органически активные вещества - антибиотики, ферменты, органические кислоты и др.

Грибы могут вызывать коррозию металлов, разрушать кожу, бумагу, ткани. Многие грибы наносят существенный вред человеку, животным и растениям, вызывая ряд заболеваний (микозы, стригущий лишай, паршу), а также приводить к порче пищевых продуктов и тем самым служить причиной различных отравлений.

ОТДЕЛ ЛИШАЙНИКИ (LICHENES)

Это группа симбиотропных растений, состоящих из 2 компонентов - автотрофных водорослей и гетеротрофных грибов. Грибная основа лишайников формируется в основном сумчатыми грибами. Водорослевый компонент состоит из видов, относимых в большинстве случаев к представителям отделов зеленые и сине-зеленые водоросли. Выделенные из лишайника водоросли не отличаются от свободно живущих форм. Физиологически этот тип симбиоза основан на межклеточном обмене между водорослями и грибами. Гриб питается углеводами водоросли, а водоросли получают от грибов минеральные вещества. Однако симбиоз с грибами приводит к появлению нового биологического качества, которое выражается у лишайника в его способности размножаться как единый организм.

Вегетативное тело лишайников представлено слоевищем, имеющим различную окраску (серую, зеленоватую, буро-коричневую, желтую или почти черную). Морфологически различают 3 основных типа слоевища лишайников: накипной (корковый), листоватый и кустистый (рис. 5.23), однако существуют и переходные формы. Наиболее низкоорганизованные - накипные, или корковые, слоевища; они имеют вид порошковатых, зернистых, бугорчатых налетов, плотно срастающихся с субстратом и не отделяющихся от него без значительных повреждений.

Рис. 5.23. Различные типы слоевищ лишайников: А - корковый (графис - Graphis scripta); Б - листоватый (ксантория - Xanthoria); В - кустистый (кладония - Cladonia)

Более высокоорганизованные лишайники имеют листоватое слоевище в форме пластинок, чешуек или розеток, прилепленных к по- чве или деревьям с помощью ризин - аналогов ризоидов, состоящих из пучков грибных гиф.

Наивысшей организации в своем строении достигают лишайники с кустистым типом слоевища, имеющие вид разветвленного кустика (12-15 см в высоту) и срастающиеся с субстратом только основанием.

По анатомическому строению лишайники бывают гомеомерными и гетеромерными (рис. 5.24). У более примитивных - гомеомерных - по всей толще слоевища равномерно расположены грибные гифы и водоросли. При гетеромерном строении на поперечном разрезе лишайника сверху можно видеть так называемую верхнюю кору. Она образована переплетающимися и тесно смыкающимися грибными гифами. Под корой грибные гифы лежат более рыхло, и между ними находятся клетки водоросли (гонидиальный слой). Внутри слоевища можно выделить сердцевину, состоящую из рыхлых грибных гиф и больших пустот, заполненных воздухом. Под ней размещается нижняя кора, которая по строению сходна с верхней. Через нее из сердцевины проходят отдельные гифы (ризины), закрепляя лишайник в субстрате.

Большинство лишайников легко переносят высыхание. Фотосинтез и питание у них в это время прекращаются, чем и объясняется их незначительный ежегодный прирост.

Размножение лишайников преимущественно вегетативное, осно- вано на способности лишайников регенерировать из отдельных участков. Оно осуществляется путем фрагментации (отделения участков слоевища) или с помощью обособленных групп клеток водорослей, окруженных гифами гриба и различных по своей форме, - соредий, изидий и лобул (рис. 5.25). Соредии - мельчайшие образования округлой формы, включающие одну или несколько клеток водоросли и окруженные грибными гифами. Изидии - бугорчатые палочковидные выросты на верхней поверхности слоевища.

Рис. 5.24. Анатомическое строение слоевищ лишайников: А - разрез гомеомерного слоевища лишайника: 1 - гифы гриба; 2 - водорослевый компонент;

Б - разрез гетеромерного лишайника: 1 - верхний корковый слой; 2 - гонидиальный слой; 3 - средний слой с гифами гриба; 4 - нижний корковый слой; 5 - ризины

Рис. 5.25. Размножение лишайников: А - соредии; Б - изидии

Лобулы имеют вид маленьких чешуек, расположенных вертикально на поверхности слоевища или по его краям. Кроме того, наблюдается бесполое размножение с помощью спор, самостоятельно образующихся и у водорослей, и у грибов.

Половое размножение изучено недостаточно, но в общих чертах протекает так же, как у свободно живущих грибов.

Значение лишайников велико. Они разлагают и минерализуют ор- ганические вещества почвы. Являются первопроходцами - одними из первых заселяя скалы, они разрушают их поверхностный слой и, отмирая, образуют гумус, на котором расселяются другие растения. Лишайники являются индикаторами чистоты воздуха, так как не выносят даже малейших примесей сернистых газов. Из некоторых их видов получают краску и особое вещество - лакмус (для химической промышленности). В тундре и лесотундре лишайники (ягель) являются основным кормом для оленей. Встречаются съедобные лишайники также в полупустынных и пустынных районах Киргизии и Туркмении.


Гаустории - "орган" ответственный за выделение ферментов у грибов

У мучнисторосяных грибов с поверхностным мицелием гаустории развиваются следующим образом: аппрессорий, прикрепляясь к клетке растения-хозяина, выделяет специфические ферменты, разрыхляющие клеточную кутикулу, и через разрушенные участки от основания аппрессориев выходит росток, внедряющийся в полость растительной клетки. В образовавшуюся гаусторию перетекает ядро. У ржавчинных грибов с межклеточным мицелием гаустории являются продолжением вегетативных гиф, которые, проникнув в клетку хозяина, изменяют свой внешний вид.

Для растительной клетки гриб является инородным телом, внедрение которого не проходит бесследно: клетка растения реагирует на присутствие гриба образованием каллозного чехла, препятствующего дальнейшему росту гаустории.

Гаустории состоят из трёх частей: материнской грибной клетки, шейки гаустории - части, пронизывающей клеточную стенку, и собственно гаустории, расположенной внутри клетки хозяина. Иногда из одной материнской клетки может прорастать несколько гаусторий.

Установлено, что чем больше выражены сапрофитные свойства гриба, тем большим набором ферментов он обладает, что позволяет ему поселяться на самых различных субстратах и осваивать их как источник питания. Некоторые сапрофитные грибы обладают свойством вырабатывать около 20 различных ферментов, причем состав последних может быть непостоянным и меняться в зависимости от субстрата.

Ферменты грибов обладают изумительными свойствами. С их помощью грибы могут легко разрушать такие материалы, которые с трудом поддаются воздействию химических реагентов. Изучая механизм разрушительной работы грибов, специалисты находят пути использования его для нужд нашей жизни. Так, например, с помощью ферментных препаратов хлебопекам удается быстрее готовить тесто, а хлеб выпекать более румяным, с хрустящей корочкой. Этот препарат получают из гриба аспергима. У ферментов есть специализация, благодаря которой они действуют акцентировано только на какое-либо одно, определенное вещество. В случаях, когда предстоит «раскусить» очень сложное по строению вещество, всегда набирается несколько ферментов, действующих совместно или в определенной последовательности друг за другом. Таким образом, функции ферментов, направлены к превращению нерастворимых органических соединений в растворимое вещество, главным образом в сахар, то в их деятельности наблюдается преемственность, вследствие чего нерастворимое образование постепенно расщепляется на отдельные части, из которых затем вырабатывается растворимая глюкоза. Отсюда и присутствие в живых клетках грибных гиф разнообразных, иногда многочисленных ферментов.

Большой интерес представляют трутовики. Они вызывают обычную бурую или белую гниль. Те, что вызывают бурую гниль, «выедают» целлюлозу с помощью фермента целлюлозы. Вот этот-то фермент привлек к себе внимание специалистов. Ведь целлюлоза, или клетчатка, содержится не только в древесине. Ее много в морковке, капусте, горохе и, конечно, в грубых кормах. Этими ферментами обработали силос - и он стал лучше усваиваться животными, в нем прибавилось сахаров; макароны - и они стали усваиваться гораздо быстрее. После обработки ферментами лучше усваиваются горох, фасоль и другие продукты. Исходя из полученных данных ученые-микологи задумываются над еще более сложной задачей - как с помощью ферментов изменить процесс работы гидролизных заводов, где из древесины получают спирт и кормовые дрожжи. Тогда не потребуется кислот, пара и весь процесс пойдет при комнатной температуре. Но где же взять фермент? Какой трутовик выбрать? Пока остановились на окаймленном трутовике. Гриб дает отличный фермент, но мало.

Количество ферментов в грибах подчиняется общему правилу. Чем более специально приспособлен к определенному субстрату вид (например, мухомор, растущий на почве хвойных и смешанных лесов), тем меньшим количеством ферментов он обладает (у мухомора их не более четырех). Многие низшие грибы, поражающие большое количество субстратов, и высшие, дереворазрушающие (трутовики, вешенка), которым приходится находить провиант в сложных соединениях древесины, обладают достаточно большим ассортиментом ферментов. Этим объясняется тот факт, что выделенные из естественной среды произрастания грибы хорошо развиваются в искусственных условиях в научных лабораториях. Здесь они растут в так называемой чистой культуре.

Основным продуктом питания грибов являются углеводы, в частности простые сахара, высшие спирты и многоосновные кислоты, которые они используют для построения тела и в качестве источника энергии. Такой важный элемент, как азот, большинством видов усваивается как из неорганических, так из органических соединений. К необходимым элементам питания грибов относятся калий, магний, железо, цинк, сера, фосфор, марганец, медь, скандий, молибден, галлий, ванадий. Некоторые из названных элементов усиливают действие ферментов, а некоторые входят в состав их молекул. Для нормальной жизнедеятельности грибам необходимы также витамины и ростовые вещества (биотин, инозит, пиридоксин, никотиновая и пантотеновая кислоты). При отсутствии этих веществ замедляется или прекращается рост грибов.

Ферменты в работе

По характеру своей деятельности ферменты делятся на несколько групп. Первая группа включает в себя ферменты так называемого гидролитического действия. Оно проявляется в следующем. «Команда» из нескольких ферментов расщепляет какое-либо вещество, одновременно присоединяя к его молекулам воду. Конечный результат такой работы - разжижение этого вещества. Характерным примером может служить картина развития какого-либо гриба на поверхности желатина. Верхний слой желатина расплывается лужицей от растворения его твердых составляющих материалов-белков. Таким следом отмечаются обычно ферменты-протеазы.

Протеазы

Протеазы, протеиназы, протеолитические ферменты - ферменты из класса гидролаз, которые расщепляют пептидную связь между аминокислотами в белках.

Протеазы могут быть разделены на две основные группы: экзопептидазы (отщепляют аминокислоты от конца пептида) и эндопептидазы (расщепляющие пептидные связи внутри пептидной цепи). Эндопептидазы нашли более широкое промышленное применение, чем экзопептидазы. Так же пептидазы классифицируют по оптимуму рН работы фермента (кислые, щелочные или нейтральные протеиназы), по субстратной специфичности (коллагеназы, кератиназы, эластаза и др.), и по их гомологии с хорошо изученными белками (трипсино-подобные, пепсино-подобные). Классификация по строению активного центра протеаз включает:

Сериновые протеазы (трипсин химотрипсин, субтилизин, протеиназа К);
- аспартатные протеазы (пепсин, ренин, микробные аспартатные протеазы);
- цистеиновые протеазы (папаин, фицин, бромелаин);
- металлопротеазы (коллагеназа, эластаза, термолизин).

Сериновые протеазы (сериновые эндопептидазы) - ферменты, способные разрезать белки рассечением пептидных связей и отличающиеся от других протеаз наличием в своём активном центре аминокислоты серина.
Сериновые протеазы содержатся как в многоклеточных, так и в одноклеточных организмах, они есть как у эукариотов, так и у прокариотов. Их подразделяют на кланы по особенностям структуры, а кланы, в свою очередь, делятся на семейства, члены которых имеют схожие последовательности.
Протеолитические ферменты могут быть получены из растительных (папаин, фицин и др.), животных (трипсин, ренин и др.) источников и микроорганизмов. Среди микроорганизмов, основными продуцентами являются бактерии, представители родов Bacillus, Streptomyces, Pseudomonas и микроскопические грибы родов Aspergillus, Mucor, Penicillium и др.

Пектиназы

Название пектиназа дано этим ферментам не случайно, и произошло оно от их способности утилизировать такое вещество, как пектин. Пектином свойственно именовать межклеточное вещество растительных тканей, склеивающее смежные клетки. Более-менее значительные полости между клетками и скоплениями из них заполнены до предела пектином. Если грибу, имеющему в своем арсенале пектиназы, предложить в качестве субстрата материал с обильным содержанием пектина - например, ломти турнепса или моркови, - то по прошествии некоторого времени обнаруживается довольно любопытное зрелище. Пектиназы буквально выгрызают межклеточное вещество из растительной ткани, вследствие чего она распадается на отдельные мелкие части. По сути пектиназы представляют собой гетерогенную группу ферментов катализирующих деградацию пектина (структурный компонент клеточной стенки растений). В составе пектиназ выделяют следующие группы ферментов:
Пектинэстеразы катализируют отщепление метильных групп пектина с образованием пектиновой кислоты;
Полигалактуроназы осуществляют гидролиз α-1,4-гликозидных связей в цепи пектиновых веществ. Разделяют на полиметилгалактуроназы (действуют на пектин) и полигалактроназы (действуют на пектиновую кислоту):
Пектинлиазы катализируют негидолитическое ращепление пектина.
Пектолитические препараты разделяют на две группы в зависимости от рН-оптимума работы ферментов: кислые и щелочные. Эти свойства определяют возможность применения пектиназ для разных отраслей промышленности. Кислые пектиназы применяют в производстве соков и вин, а щелочные − для текстильной промышленности.
Пектиназы, полученные с помощью грибных штаммов продуцентов, активны в кислых значениях рН, в то время как щелочные ферменты производятся бактериальными штаммами. Наиболее распространенной технологией является получение пектиназы из Aspergillus niger с использованием методов глубинного и поверхностного культивирования.

Липаза

Жиры также подвергаются влиянию грибов. При этом «необходимые полномочия» делегируются ферментам - липазам. Липаза (англ. Lipase), иногда Стеапсин (англ. steapsin) - водорастворимый фермент, который катализирует гидролиз нерастворимых эстеров - липидных субстратов, помогая переваривать, растворять и фракционировать жиры.
Большинство липаз действует на специфический фрагмент глицеринового скелета в липидном субстрате (A1, A2 или A3).
Липаза вместе с желчью переваривает жиры и жирные кислоты, а также жирорастворимые витамины A, D, E, K, обращая их в тепло и энергию.
Липопротеинлипаза расщепляет липиды (триглицериды) в составе липопротеинов крови и обеспечивает таким образом доставку жирных кислот к тканям организма. Их контакт с жирами заканчивается «полной потерей лица» последних, вынужденных «согласиться» на превращение в жидкую эмульсию. Из числа гидролизирующих ферментов грибов особый интерес представляют уреазы. Они ориентированы на разложение мочевины. Мочевина накапливается в грибных тканях как отброс. Причем это происходит только в случае усиленного питания грибницей азотистыми веществами на фоне углеводного голодания. Как только в питательной среде появляется достаточное количество углеводов, грибница начинает поглощать их в избытке, игнорируя при этом азотсодержащие элементы питания. Необходимый для обмена веществ азот при помощи уреаз извлекается из мочевины и тут же поглощается.

Оксидазы

Ферменты класса оксидоредуктаз; широко распространены в природе, катализируют в живых клетках окислительно-восстановительные реакции, в которых акцептором водорода служит кислород воздуха. При переносе на O 2 водорода от окисляемого субстрата образуется вода (H 2 O) или перекись водорода (H 2 O 2) По структуре одни Оксидиазы - металлоферменты (так, тирозиназа, аскорбинатоксидаза содержат медь), другие - флавопротеиды (например, глюкозооксидаза). Они способствует окислению (разложению) накопленных грибницей запасных веществ. В результате этого вырабатывается необходимая энергия для проявления жизнедеятельности грибных клеток. Деятельность этих ферментов напоминает печку, сжигающую топливо. Образующееся при этом тепло разогревает окоченевшие члены, придавая им тем самым возможность двигаться. Типичные представители ферментов-оксидаз - лакказа и пероксидаза. В растительном мире лакказа встречается, например, в соке лакового дерева. Благодаря ей этот сок быстро твердеет и темнеет, образуя такой известный материал, как японский лак.
Еще одна группа ферментов - зимазы - принимает активное участие в процессе дыхания грибов. Поэтому чаще их называют дыхательными ферментами. Эти ферменты при наличии кислорода превращают накопленный в грибнице сахар в углекислоту и воду.
Перечисленные три группы ферментов считаются основными у грибов. Каждая из них несет свою функцию и назначение. 

Грибы-сапрофиты - это особые организмы, питающиеся оставшимся частями растений или животных. К категории сапрофитов в настоящее время относится большое количество грибов. Они питаются веществами, которые самостоятельно извлекают из останков. В качестве субстрата являются следующие останки:

  • перегной;
  • солома;
  • ветки, пни;
  • стволы;
  • перья, рога;
  • древесный уголь и другие.

Но не все сапрофиты предпочитают разнообразные субстраты. Например, известный опенок летний в основном питается останками лиственных деревьев. Ложные опята предпочитают только хвойные деревья. Другие разновидности, например, навозник белый или ризопогон желтоватый, отлично живут на территории, где существует большая концентрация азота.

Если для природы они являются полезными организмами, то для человека - нет. Эти грибы способны появиться на продуктах питания, которые после этого нельзя больше употреблять.

Ризопогон желтоватый живет на территории с избытком азота

Примеры организмов сапрофитов

Сапрофиты питаются отмершими организмами. Результат их деятельности основан на гниении и распаде. К ярким представителям сапрофитов относятся следующие представители:

  1. Пеницилл.

Данный представитель относится к родовой ветке низших плесневых грибов класса зигомицетов. В общей сложности класс включает в себя 60 видов разнообразных грибов. Встретить их можно в верхнем слое земли, они могут развиваться на еде и органических частях. Некоторое количество мукора способно вызвать заболевание не только у животного, но и у человека.

Но есть ряд грибов, которые предназначены для применения в производстве антибиотиков или в качестве средства для закваски. В производстве применяются только те мукоровые грибы, которые имеют высокую ферментативную активность.

Размножение мукоровых грибов бывает бесполое и половое. В бесполом размножении оболочка зрелого гриба быстро и просто растворяется от влаги, при этом наружу выходят несколько тысяч спор. В половом виде размножения принимают участие две ветки: гомоталличные и гетероталличные. Они соединяются друг с другом в зиготу, после чего начинает прорастать гифа с зародышевым спорангием. В качестве закваски люди применяют мукор китайский и мукор улитковидный. Многие называют эти грибы китайскими дрожжами.

При помощи таких дрожжей люди могут получать этанол из картошки.

Мукор может вызвать заболевания у людей и животных


Данные грибы относятся к разряду грибов-сапрофитов. Они исходят из рода высших аэробных плесневых грибов. В состав класса входит несколько сотен разновидностей. Все разновидности широко распространены в разнообразных климатических поясах. Аспергиллы могут отлично приспосабливаться к разнообразным субстратам, при этом образуют пушистые колонии. Первоначально данные колонии имеют белый оттенок. Но в дальнейшем оттенок изменяется в зависимости от прогрессирования вида гриба.

Что касается мицелия гриба, то он довольно силен. Имеются в наличии перегородки. Как и многие сапрофиты, аспергиллы осуществляют размножение при помощи своеобразных спор. Аналогично мукору аспергилл может размножаться как бесполым, так и половым путем. В отличие от других грибов данный классовый представитель не имеет половой стадии развития. После того как появилась способность определять ДНК, ученые выяснили, что аспергилл близкородственен к аскомицетам.

Найти аспергилл можно в почвах, где имеется большое содержание кислорода. В основном он прорастает в виде плесени на верхней части субстрата. Разновидности данного сапрофита представляют собой опасные заражающие организмы, поражающие главным образом продукты питания, в составе которых имеется крахмал. Они также могут прорастать на поверхности или внутри дерева или растения.

Аспергилл - высший аэробный плесневый гриб

Выбор редакции
Охота на зайца зимой считается наиболее простым и доступным видом охоты для начинающего. Хотя она интересна и для опытного охотника. На...

Ловля голавля относится к динамичным видам рыбалки независимо от применяемой снасти. Ведь шустрая и быстрая рыба, обнаруженная рыболовом...

Не каждый россиянин, наверное, слышал о таком государстве, как Бруней. Тем не менее данный султанат известен еще из китайских хроник XV...

Этнический колорит, ритуалы индейцев и зажигательные карнавалы – это не совсем то, с чем мгновенно ассоциируешь Чили. Тем не менее в...
У каждого народа мира есть свои особенности, которые являются для них абсолютно нормальными и обыденными, но если в их среду попадет...
Полезная информация для туристов о Лейпциге в Германии - географическое положение, туристическая инфраструктура, карта, архитектурные...
На нашей планете насчитывается более 250 государств, каждое из которых имеет свой национальный флаг. Как правило, он состоит из полос или...
Аргентина необъятна по своим пространствам и несравнима по удивительно разнообразной и сказочной природной красоте. Где находится...
Когда, как не после выхода на заслуженный отдых увлечься туризмом и отправиться в увлекательное путешествие? И не обязательно для этой...